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1 Introduction

This is the Hnal technical report for Phasc I STTR project that focnsed on extensions to the TIOA
{Timed Input/Output Automata) language and [ramework as well as its companion system: Tempo.
Specifically, it describes the advanceinents in the theory of TIOA and the addition of a langnage
extension and software tool back-end aimed at assisting users of the methodology when turning
their attention to the implementation aspects of their distributed system. The new extension makes
it possible to specify the characteristics of a deploynient environment at the TIOA level with model
amotations. The annotations are then used by Tempo to derive a combinatorial optimization model
that produces an optimal (with respect to an objective specilied in the annotations) deployment
scenario. The back-end tool relies on state-of-the-art combinatorial optimization tool to solve the
optimization problem. The Tempo tool-chain now offers an end-to-end salution starting with the
specification of a distribnted algorithm to its optimal deployment on a target platform.

1.1 The problem and our solution

Challenges in developing distributed systems. Developing dependable distributed systems
for modern computiug platforins continues Lo be challenging. While the availability of distribnted
widdleware makes feasible the coustruction of systems that rin on distributed platforims, ensuring
that the resulting systems satisfy specific safety, timing, and fanlt-tolerance requirements remains
problematic. The middleware services used for constructing distributed software are specified in-
formally and without precise guarantees of cfficiency, timing, scalability, compositionality, and
fanlt-tolerance. Even when services and algorithms are specified formally, rigorons reasoning abont
the specifications is often left out of the development process.

As contemporary distributed systems continne to grow in complexity and soplistication in many
domains, these systems are required to have formally-specificd guarantees of safety, perfoninance,
and fault-tolerance. Current software-cngineering practice limits the specification of such reqnire-
ments to informal descriptions. When formal specificatious are given, they are typically provided
only for the system interfaces, The specification of interfaces alone stops far short of satisfying the
needs of nsers of eritical systems. Such systems need to be eqnipped with precise specifications
of their semantics and gnaranteed behavior. When a system is built of smaller components, it is
important to specify the properties of the system in terms of the properties of its comnponents.

We view formal specification and analysis as valnable tools that should be at the disposal of
the developers of distributed systems.

Furthermore, once a system is specified, the implementation efforts are often informally con-
nected to the specification which implics that the guarantees offered by the formal tools may not
carry over to the implementation. Additionally, the deployment of the implementation on an ac-
tual platform raises its own set of challenges to meet the timing. fault-tolerance and scalability
requirenments.

It is thus desirable to offer an integrated approach that covers the cntire process, from design
to implementation and deployment of the resulting distributed system.

Our approach to modeling and analysis of complex distributed systems. This project
developed teclmiques and tools that are designed to be used in constructing provably correct dis-
tributed software. At the specification level, 1t leverages the I0A formalism (named after lu-
put/Outpnt Antomata) and its companion toolset Tempo. TOA use mathematical models—in
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particular, interacting state machines—as an integral part of the software development process.
The stages of this process withiin the scope of our framework are as follovs. Abstract requirements
for a distributed systcm are specified using a modeling language. These specifications are then re-
fined through multiple levels of abstraction. Each refineinent step is fornzally validated. Validation
Lechniques include a combination of simulation, model checking, and tl eorem proving. The goal
of the refinement process is to produce sufficiently detailed inodels that (a) can ultimately be used
to generate distributed code automatically, and that (b) are guaranteed 10 be consistent with the
modeled systen requirements.

To supporl automaled formal methods for constructing or analyzing systems, a modeling lan-
guage nust rest on a solid mathematical foundation. The 1/0 automaton model {20] and its timed
extensions {13] provide such a foundation. [/O automata lhave been used to describe and verify
many distributed algorithims aud systems (see, for example, [16]), and Timed 1/O Automata have
been used Lo model timing-dependent distributed algorithms and real-time control systewms [13].

The Tempo language uses the Timed I/O Automala to describe interacting state machines.
They are nondeterministic, which makes them suitable for describing systems in their most general
forms. Tlie state of a TIOA can change in two ways: discrele transitions, which are labeled by
discrete actions, change the state instantaneously, whereas {rajectories a-e functions that describe
tlte evolution of the state variables over intervals of time.

Target systems. Many types of systems are currently developed using software eugineering
methodology that is less than adequale in its ability to handle formal modeling and analysis of
complex distributed software, and we anticipate that several specific types of systeins will benefit
from being designed within our proposed framework. The types of systems include:

¢ Distributed data systems: dala collection, manageinent, dissesnination; cousistent replicated
. shared-dala systems.

¢ Conmunication: group conmmunication systems, broadcast and multicast systeins witlt quality-
of-service guarantees.

e Coordination and control: traffic manageinent, industrial process control, automated manu-
facturing systems, transportation (e.g., TCAS, traffic collision avoic.ance system used in civil
aviation).

Many such systems involve specialized distributed platforms, such as networks of sensors and
mobile ad hoc networks.

1.2  Summary of project objectives and accomplishiments

Witl the ultimate goal of providing a more complete formal methodology and associated (Lools to
substantially improve tlie state of the art in developing software for complex distributed systems,
the project objectives encompassed the following.

Theory and Methodology. 1n developing service definitions and algor.thms for distributed sys-
tems, analyzing the resulting specification, and generating code from specizications for such systems,
the results only make sense if they are ultimately based on a sound underlying mathenmatical model.
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This project uses interacting state machine models. Standard models like I/O (Iuput/Output) au-
tomata and timed 1/0O automata provide the foundation for the Tempo language that we develuped
previously. However, some of the systems require richer niodels capable of describing complexities
such as probabilistic and cuntinuous behaviors. New models for particular kinds of timing and fail-
ure behavior aud corresponding analysis metliods are also needed. Existing models that handle such
features need to be improved and better integrated. Other extensious are needed to express cou-
straints for deploying systems defined in terms of the Tempo language in physical target networks,
aud for optimizing deployment over target networks based on various performauce consideratious.
We collectively refer to these 1/0O automata models and the languages for system specifications
in these models as Tempo*. In this project we have advanced the theory for such models, in
particular the probabilistic extensions, we have extended the furinal framework and niethodology
for analyzing system specifications, and deriving distributed code from such specifications, and we
liave prototyped languages for specifying complex distributed systems in such models.

Our accomplisliuents in this area are preseuted in this report as follows. The probabilistic
and lybrid extensions to the Input/Output Automata framework are presented in Sectiou 3. The
deployment-oriented augmentations of the Tempo framework are presented in Section 5.

Modeling, Analysis, Code Gencration, and System Deployment Tools. We performed
research and feasibility studics needed to develop computer-aided design tools for analysis of com-
plex distributed systems expressed in the Tempo* forinalism and to prototype such tools uu the
basis of the Tempu framework developed previously. New modeling and analysis tools aud tool
extensions that are the result of our work include the following. The lunguage processor is a front
end tool that will accept Tempo* specifications, perforin static and type analysis, and produce
intermediate output for use by other tools. The simulator is a tool designed tu simulate execu-
tions of Tempo# specifications and to provide linked simulations of pairs of specifications, where
one specification gives an abstract definition and the other is a more concrete specification that is
supposed to implement the abstract definition.

Building on our prior work on code generation for distributed systems, we have explored for-
mal approaches to code generation from Tempo* specificatiuns, and prove theorems abuut the
correctuess of the resulting code. We prototyped tools for mapping Tempo* system specifications
consisting of multiple automata to target networks subject to distributed deployment constraints
and efficiency and resonrce cousiderations, e.g., communication bandwidth, sturage requirements,
and redundancy for fault-tolerance.

Our accomplishients in this area are presented in this report as follows. An overview of and
our latest refinements to the existing Tempo integrated development environment are preseuted
in Sections 2 and 4. The tools and translators for dealing witlt deployment problem of systews
specified in Tempo are presented in Sections 3 aud 6. In Sectiou 8 we summarize our work on formal
treatment of channel implementations as a part of our work towards code gencration extensions.

Applications: Evaluations and Feasibility. Inorder to evaluate the effectiveness, scalability,
and extensibility of our methiodology and prototypes, we applied them to mode} and analyze repre-
seutative systems. Compared Lo previous attempts to optimize the deployment of interesting sys-
tems we have obtained substantial improvements using our integrated approach with constrained-
progranmming based solutious.

We present out accomplislients in Section 6 and 7.
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1.3 Project team and academic partner institution

The project team over the duration of the effort included the following peaple:

Laurent Michel, Ph.D., System Architect and P1
Nancy Lynch, Ph.D., Chicf Technical Olficer and Co-PI
Alex Shvartsnian, Ph.D., Project Manager and Co-PI
Carleton Colfrin, Senior Software Engineer

Elaine Sonderegger, Graduate Researcher, Development
Dilsun Kaynar, Tempo Consultant

Our academic partner on this project was the University of Counecticut
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1.6 Document structure

Section 2 presents the overall [ramework at a high level, including tools descriptions, and specilica-
tion examples. In the rest of the report we describe in detail the Phase 1 work and onr accomplish-
ments. Tu Section 3 we describe the advances in extending the formal Input/Output Autoinata and
Timed Input/Output Automata [rameworks to include reasoning about probabilistic and liybrid
svstems. In Section 4 we first briefly review the architectnre of the integrated Tempo framework
aud focus in section 5.1 on the new annotations related to deployment issues. In Section G we
present the translation module responsible for deriving combinatorial optimization wodels [rom
Tempo specifications. In Section 7 we discuss the optimizer back-end and illustrate its capabilities
o the deployment of a distributed systen: (Eventually Serializable Data Services). In Section 8 we
sunimarize our work on formal treatment of channel implementations as a part of our work towards
code generation extensions.
We conclude in Section 9. Bibliograply completes this report.

2  Tempo Toolkit for Timed Input/Output Automata Formalism

Tempo is a formal language [or imodeling distributed, concurrent, and timed systems as collections
of interacting state machines, called timed input/output automata. Tempo provides natural math-
ematical notations for describing systems, their intended properties, and intended relationships
between their descriptions at varying levels of abstraction. The Tempo Tootkit is an implementa-
tion of the Tempo language and a suite of tools that supports a range of validation methods for
descriptions of systems and their properties, including static analysis, simulation, and machine-
checked prools. This section gives an overview of the Tempo language and illustrates its utility on
selected examiples of importance to distributed computing. The focus of the presentation is on the
Tempo tools. We quickly review the purpose of Timed I/O Automata and TEMPO language 2.1,
the TEMPO toolset (Sectian 2.2}, and briefly review an example in Section 2.3.

2.1  What is the Tempo language?

Tempo is a formal language for modeling distributed systems as collections of interacting state
machines called Timed Input/Oulpul Automatu [13]. Timed Input/Output Automata are often
relerred to as Timed I/0 Automata, or just TTOAs. The distributed systems in question may have
timing constraints, for example, bounds on the time when certain events may occur, or bouuds on
the rates of change of component clocks. They may nse time in significaut ways, for exanple, lor
timeouts, or for scheduling events to occur periodically. Timed I/O Automata forimalisiu provides
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good support for describing these coustraints and capabilities. Timed anc untimed I/O Automata
formalisms lave been effectively nused for specifying numerons distributed a 1d concurrent algorithins
{16]. The Tempo language provides simple formal notation for describii g Timed 1/0 Automala
precisely, based on the pseudocode notation that has been used in many research papers. It also
allows specification of properties such as invariant assertions and relatior ships between automata
at different levels of abstraction. The Fempo language is supported by an associated integrated
development environment toolkit, also called Tempo, that provides an extensible framework sup-
porting a range of integrated analysis and validation tools, including static analysis, simulation,
wodel-checking, and theorem-proving.

Many distributed systems involve a combination of computer components and real-world, phys-
ical entities such as velicles, robots, or medical devices. Systems invol-ing interaction between
computer and real-world components usually have strong safety, reliabilily, and predictability re-
quirements, stemming from the requiremeénts of real-world applications. This makes it especially
important to have good methods for modeling the systems precisely and analyzing their beliavior
rigorously. Tempo provides a simple, elegant, and powerful mathematical foundation for analyz-
ing a wide variety of systems, and it can be used to model both computzr and real-world system
components, as well as their interactions.

Tempo can be used to model practically any type of distributed system, including (wired and
wireless) communication systems, real-time operating systems, embedded systems, automated pro-
cess control systems, and even biclogical systems. The behavior of these szstems generally includes
both discrete state changes and continuous state evolution; Tempo is cesigned to express both
kinds of changes.

The Tempo Toolkit was developed by VEROMODO Inc., with support provided by an AFOSR
technology transfer grant. The beta releases of the Tempo Toolkit for Linux, Windows, and Mac
0S X platforms are available for download at www.veromodo.com.

Earlicr wark on a toolkit supporting specification in (mtimed) Inpn/Output Antomata was
performed at the MIT Theory of Distributed Systems group [9]. The pratotype toolkit supported
a simulator [6], paired automata simulation [28], and simnlations of comzosed automata [29].

2.2 Tempo language overview

We now discuss the Timed I/O Automata formalism that is the basis of tiie Tenipo language, and
summarize the capabilities of the toolkit.

2.2.1 Timed I/O Automata

The Timed 1/O Automata [13] mathematical framework is an extension of the classical /O Au-
tomata framework [20, 16], which for many years has been successfully used in the theoretical
distributed computing research commmuity to specify and reason about distributed and concurrent
algorithms. I/O Automata are very simple interacting asynchronous state machines, without any
support for describing timing features. Although they are simple, I/O Au.omata provide a rich set
of capabilities for modeling and analyzing distributed algorithins. I/0O Actomata support descrip-
tion of many properties that distributed algorithms are required to satisfy, and mathematical proofs
that the algorithms in fact satisfy their required properties. These proois are based on methods
such as invariant assertions and compositional reasoning. I/O Automata also support representa-
tion of algorithms at different levels of abstraction, and proofs of consister cy relationships between
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algorithm representations at different levels. Because of these capabilities, 1/0 Automata have
been used fairly extenstvely for modeling and analyzing asynchronous distributed algorithmns, and
even for proving impossibility results about computability in asynchronous distributed settings.

However, ordinary [/O Automata caimmot be used to describe distributed algorithms that use
time explicitly, for example, those that use timeouts or schedule events periodically. And they do not
provide explicit support for describing timing constraints such as bounds on message delay or clock
rates. Moreover, without support for timing, I/O Automata could not be used for other applications
such as practical communication protocols. These limitations led to the development of Thned
1/0 Automata, whicl include new features——nost notably, trujectories—specifically designed for
describing timing aspects of systems.

Like ordinary I/O Automata, Timed I/O Automata are simple interacting state machines and
liave a well-developed, elegant theory, presented in {13]. Like I/O Automata, Tiined I/O Automata
provide a rich set of capabilities for system modeling and analysis. Methods used for analyzing
timed 1/0 antomala are essentially the same as those used for ordinary 1/0 automata: invariant
assertions, compositional reasouing, and correspondences between levels ol abstraction.

2.2.2 The Tempo language and tools

1/0 Automata and Timed 1/O Automata are fine mathematical modeling frameworks for dis-
tributed systems and have been used, by hand, to describe and analyze distributed algorithins,
cominunication protocols, and embedded systems. Yet, computer support could make these tasks
quite a bit easier. The Tempo Language and Toolkit is an attempt at providing a broad set of tools
to support these activities.

The Tempo toolkit contains tools to support analysis of systems. These include a compiler that
checks syntax and perform static semantic analysis; a simulator to produce and explore execution
traces for an automaton; a translation module to the UPPAAL model-checker {14}; and a translation
nodule to the PVS interactive theorem-prover [27]. The overall architecture of the Tempo toolkit
has been designed to facilitate incorporation of other validation tools i the future.

The Tempo language has a rather minimal syntax, which closely matches the simple semantics
of the Timed I/O Automata mathematical framework. In fact, the mapping between a Tempo
automaton description and the Tinied I/O Automata that it denotes is pretty transparent. For
example, an automiaton’s discrete transitions and continuous evolutions are described directly in
Tempo, by “transitions” and “trajectories”, respectively. The minimality of the Tempo language
does not lhmit its expressive power: Tempo is capable of describing very general systems of Timed
I/O Automata. Of course, many analysis tools—especially automated ones like model-checkers—
are not capable of handling fully general Tempo programs. In contrast with the conventional
approach taken by developers of automated tools, Tempo does not outright limit the expressive
power of the language and opts instead for the definition of sublenguages that are suitable for use
with particular tools.

2.3  An Example: mutual exclusion algoritlim

To illustrate the capabilities of Tempo and its simulator, we will be using the Fischer Timed Mutual
Exclusion Algorithm. [t has become famous as a standard test example for formal nethods for
modeling and analyzing timed systems. An informal description of the exaple appears in [16],
Chapter 24.
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2.3.1  The Tempo specification

This example illustrates most of the basic constructs needed for writing a Tempo program for a
singte Timed 1/0 Automaton modeling a shared-meory system. The ex ample also demonstrates
how to express invariants using Tempo, including invariants that involve time.

The Teiupo model shown in Cude 1 and 2 describes the entire systera as a single Timed 1/0
Automaton. The vocabulary section declares the data types used in the algorithm, namely, the
abstract data type proccss and the program counter abstract data type PcVafue (an enuierated
type) to represent the exact location of each process in its programn. Eaca process conld be in its
remuainder reyion (program counter = perem), where it is not engaged in taying 10 enter the critical
region. Or, it could be abunt tu test, set, or check the turn variable. Cs, it could be in various
stages of entering or leaving the critical region—the model uses separate [ ‘ogram counter values to
represent, situations where thie process has snccessfully completed the trving protocol, where it is
actually in the critical region, where it is about Lo reset the turn variable ipon leaving, and wlere
it has successflly completed the exit protocol.

The actual automaton description begius with the name of the autom=ton, with formal param-
eters Lcheck and u_set. These are real numbers representing, respectively, a lower bound on the time
between setting and checking, aud an upper bound ou the Lime between clecking and setting. The
where clanse specifies restrictions imposed ou the parameters saying (moss importantly) that wset
must be strictly less than Lcheck. The automaton imports the vocabulary to make its definition
available 1o the remainder of the specification.

The automaton's signaturc, describe its actions. Actions are classif=d as input, ontput, or
internal. Here, no input actions are used, i.e., the system is “closed”. & nce the entire system is
being modelled by a single automaton, each type of action is parametet zed by the name of the
process that perforis it. In this model, the internal actions are assocized with shared-variable
accesses—tlie steps that test, set, clieck, and reset the turn variable. The sutput actions are Uiose
that mark processes’ progress through the varions high-level regions of the r code: The try(i} action
describes process 1 moving [rom its remainder region Lo its frying regios, in which it executes a
protocol to try to reach the critical region. The crit(i) action describes sassage [rom the trying
region Lo the critical region, and the ezit{i} action describes passage [rom .he critical region to the
exil region, where process i performs its exit protocol. Finally, the rem(i) action describes passage
from tlie exit region back to the remainder regioi.

The automaton’s state is specified in the states section. The shares variable turn has type
Null[process|, which indicates that its value can either be a process or the special value nil to
indicate the absence of value. turn is initially set to nil. The variable pc represents tlie program
counters for all of the processes in an array of PeValuc indexed by processes. Inuitially, all of the
program counter values ave set Lo pc.rem, which means that all of the processes start out in the
remainder region.

The remaining three variables are jutroduced solely to express the ne2ded timing constraints.
First, the variable now is used to represent the real time. It is initialized =1 0.

Second, the variable fast_sct is an array coutaining absolute real time 1 sper bounds (deadlincs)
for the processes to perform set actions. A deadline will be in force for  process i only when its
program cowiter is equal to pe.set, that is, when it is in lact ready to set the turn variable. In this
case, thie valye of lastsef]i] will be a nonnegative real nunber: otherwise. that is, if the program
counter is anything other than pc_sct, the value will be oc, representing .lie absence of any such
deadline. The elemeuts of the last_set array are defined to be of typeAusmentedReal: a type that
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vocabulary fischer types
types process,
PcValue . Enumeration [pc_rem, pe_test, pe_sel, pe_check,
pe.leavetry, pecrit, pe_resel, pe_leaveeril]
end

automaton fischer(Lcheck, u_set. Real)
where u_set < Lcheck Au_set >0 Al_check >0
imports fischer types

signature

output iry(i: process)
output cril(i: process)
output erit(i: process)
output rem(i: process)
internal test(i: process)
internal set(i: process)
internal check(t. process)
Internal resel(i: process)

states .

turn: Null[proces] : = nil;

pe: Array(process, PcVelud) : = constant(pc_rem);

now. Real:=0;

last_set: Array[process, AugmentedReal} : = constant{oc);
first_check Array[process, Discreteftea]] : = constant(0),

transitions
output fry{f)
pre pefi] =perem;
eff pelt) : = pe_test;
internal test(i)
pre pefi] =pc.test;
eff if turn =nil then
pefil : = pe_set;
last_set[i] : = (now + u_set);

i
internal set(f)
pre pefi] =peset;
off turn : = embed();
peli] : = pe_check;
last_sel]i] . = o0}
Jirst_check[d] : = now + Lcheck;

Code 1: Tempo spec. of the Fischer algoritim (I)
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Internal check(i)
pre peli] =pe_check Afirst.check{i] <now,
off if turn =embed(i) then
peld] : = peleavelry,
clse
pelt] : = pe_test;

fi
first.checkd] : = 0;
output crit{i)
pro peli} =pe.leavelry,
eff peli} : = peerity
output ezit{i)
pre peli] =pecrit;
eff peli] : = pe_reset;
internal resel(i)
pre pcfi] =pe_resef;
eff pcli] : = pe_leaveezit,
turn : = nil;
output rem(i)
pre pcli] =pe_leaveexit;
eff peli] : = pe.rem;
trajectorics
trajdef fraj
stop when
3i: pracess (now =last_set]d});
cvolve
d(now) =1;

Code 2: Tempo spec. of the Fisclier algorithm (17)
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includes all (positive and negative) real numbers, plus two values corresponding to positive awd
negative infinity. Initially, since none of the programn connters is pe_sct, the values in the array are
all oo.

Third and finally, the variable first_check is an array containing absolute real time lower hounds
(earliest limes) for the processes to performm check actions, when their program counters are equal
to pe.check. The elements of first.check are of type Discretefeal, which means that they always have
Real values, and moreover, they do not change between discrete actions.

The detailed description of the transitions of the automaton follows in the transitions section.
Trausitions are (state, action, state) triples. The transitions are described i guarded command
style, using small pieces of code called transition definitions. Each transition definition denotes a
collection of trausitions, all of which share a counnon action name.

Eacl trausition has a name, list of parameters. a precondition that indicates when the action is
enabled and finally, an effect clanse that describes the changes to the state when thatl accompany the
action. Input actions are always enabled, reflecting the assumption that Timed I/O Automata are
inpul-enabled. Notionally, input actions have no preconditions, as a shorthand for the precondition
being true.

The try(i) transition represents an entrance by process i into its tryiug region. The transition
is allowed to occur whenever peli] =pc_rem, that is, whenever process i is in its remainder region.
The effect is siply to advance the program connter to pe.fest 10 indicate that process i is ready to
test the furn variable.

The test(f) Lransition represents process i testing the turn variable. It is allowed to occur when-
ever pefi] =pe_test. The transition can either find the turn variable equal to nil at which point it
moves to take the turn (by setting the program counter to pe_set) and saves in last_setfs] the deadline
for the set action 1o occur at the latest in wset time steps in the future (away from now). The
transition can also find that turn is not nif and simply takes no action to remain in the state, ready
o test again.

The set(i) trausition represents process { setting the turn variable to its own judex. This is
allowed Lo occur whenever pefi] =pe.sel. The effects are given as straight-line code in which process
i simply sets turn to its own index (the embed call is necessary to store the value into an object
of type Nullfpracess]). The code then sets the program counter 10 pe.cheek to enable the check(i)
transition that will verify the furn variable. Now that the set(i) action has ocenrred, the lost_seifs]
deadline is reset to its default value, co. The code also records the earliest time when process i
could recheck the turn variable based on the current clock now and the lower bound Lcheck.

The check(d) Lransition is enabled when process i's program counter is sel 1o pe.check and its
earliest checking time has passed (first_check{i] <now). When the transition executes, two interesting
cases may arise: If process i finds that turn is still equal to 1, it leaves the trying region and enters
the eritical region. On the other hand, if it finds the turn variable equal to auything else, it gives
up the current attempt and goes back to the testing step. In either case, first.check{i] is reset to its
default, 0.

The subsequent transitious are quite straightforward. A crit(d) transition represents process i
moving into the critical region, and an ezit(i) transition represeuts process i leaving the critical
region. A reset(i) transition represents process i resetting the furn variable to its default value nil,
and a rem(i) transition represents process i returning 1o its remainder region.

The final part of the antomaton description is the set of trajectories, that is, the functions from
time to states that describe how the state is permitted to evolve between discrete steps. This model
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specifies one trajectory definition, named frap. This definition describes Jhe evolution of the state
in a way that allowed the current time now to increase at rate 1. All of the other state variables
arc of types that are defined to be discrete: these, by default, are not allowed to change during
trajectories. The stop when condition says that a trajectory must stop [ the state ever reaclies a
point where the current time now is equal to a specified deadline lastset[], for any i. That is, time-
is not “allowed to pass” beyond any deadline currently in force.

This stop when condition is an exaple of a phenomenon whereby an automaton can prevent
thie passage ol time. This may look strauge (at first) to some prograrners, since programs of
course caunot prevent time [rom passing. However, appearances can be deceiving and the Fisclier
automaton is not exactly a program; it is a descriplive model that expresses both the usual sort of
belavior expressed by a progran, plus additional timing assumptions tl:at might be expressed in
other ways.

2.3.2 Properties of the algorithm

Tempo can be used to describe not just algoritlims, but also properties that we would like the
algorithms to satisfy. For example, the Fischer algorithm is supposed to setisfy the multual exclusion
property, saying that no two processes can simultaneously reside in their critical regions. This is a
claim that the mutual exclusion is an invarient of the Fisclier algorithm, that is, that it is true in
all reachable states of the fischer automnaton. This claim can be expressed in Tempo with a block
invariant of fischer:

Vi process Vj: process

(i #5 = (peli] #pe-crit Vpel} #pc-crit));

This invariant definition claims that, in any reachable state of the autoinaton, any two processes
cannot simultaneously be in the critical section. This formal statement 1ust, of course, be verified
with a tool in order to formally prove that the algorithin is correct. For nstance, one could use an
interactive theorem prover such ‘as PVS, a model-checker like UPPAAL, or run simulations of the
protocol and require the simulator to check the assertions after every siugle step of the shnulations.

In the next sections we describe the Tempo language and integratec developinent framework,
and their design in more detail, and we describe the work carried out in Phase 11.

3 Extensions of I/O Automata and Timed I/O Automata Frame-
works

\We have continued our work on mathematical foundations for model.ng and analyzing timed,
hybrid, and probabilistic systems. We have been pursuing an effort to extend Timed 1/0 Automata
to allow probabilistic behavior even before thie start of Phase I work, resulting in several papers,
e.g., [23, 25, 19]. In an extended series of case studies, we have alsc been using probabilistic
(PI0A) and timed 1/O automata (TIOA) to model and verify security protocols. This has entailed
extending the formal foundations in several directions, to restrict possib lities for nondeterminismn,
to define appropriate implementation relationships for the sccurity settiz g, and to integrate timing
into security models.
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3.1 Probabilistic extensions

Our recent work investigated the time-bounded task-PIOA nmodeling framework, an extension of
the probabilistic input/output automata (P10A) framework that can be used for 1aodeling and
verifying security protocols. Time-bounded task-PIOAs can describe probabilistic and nondeter-
ministic behavior, as well as timebounded computation. Together, these features support modeling
of important aspects of security protocols, including secrecy requirements and limitations on the
computational power of adversarial parties. They also support security protocol verification using
metliods that are compatible with less formal approaches used in the computational cryptograply
research community. We illustrate the use of our framework by outlining a proof ol functional
correctness and security properties for a well-known oblivions transfer protocol. These results
appeared in print in 2008 [4].

We also introduced tlie notion of approximate implementations for Probabilistic I/O Automnata
(PIOAY and developed metliods for proving such relationships (24]. We eaiploy a task structure
on the locally controlled actions and a task scheduler to resolve nondeterminism. The interaction
between a scheduler and an automaton gives rise o a trace distribution—- a probability distribution
over the set of traces. We define a PIOA 1o be a (discounted) approximate implementation of
another PIOA il the set of trace distribntions prodiced by the first is close to that of the latter,
where closeness is nieasured by tlie (resp. disconmted) uniform metric over trace distributions. We
propose simulation functions for proving approximate implementations corresponding tv each of
the above types of approxiate impleinentation relations. Since onr notion of similarity of traces
is based on a metric on trace distributions, we do not require the state spaces nor the space of
external actions of the automata to be metric spaces. We discuss applications of approximate
implementations to verification of probabilistic safety and termination.

3.2 Extensions for reasoning about security protocols

In another recent development, we investigated a new paradigin for the analysis of long-lived security
protocols. We allow entities Lo be active for a potentially unbounded amonat of real time, provided
they perform only a polynomial amount of work per unit real time. Moreover, the space used by
these entities is allocated dynamically and must be polynomially bounded. We proposed a key
notion of long-terin implementation, which is an adaptation of computational indistinguishability
to the long-lived setting. We show that long-term implementation is preserved under polynoniial
parallel composition and exponential sequential coniposition. To illustrate the use of this new
paradigm, we analyze the long-lived timestamping protocol of Haber and Kamat. This work was
submitted for publication in 2008 (5]

3.3 Extensions for hybrid systems

We completed our work on a journal paper on average dwell time for hybrid systems [15]. Average
dwell time {ADT) properties characterize the rate at which a hybrid system performs mode switches.
In this paper, we present a set of techniques for verilying ADT properties. The stability of a
hybrid system A can be verified by combining these techaiques with standard methods for checking
stability of the individual modes of A. We introduce a new type of simulation relation for hybrid
automata switching simulation for establishing that a given automaton A switches more rapidly
than another automaton B. We show that the question of whetlier a given liybrid automaton has
ADT a can be answered either by checking an invariant or by solving an optimization problem. For
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classes of hybrid automata for whicl invariants can be checked automat cally, the invariant-based
method yields an automatic method for verifying ADT; for automata that are outside this class
thie invariant lias to be checked using inductive techniques. Tlie optimization-based method is
automatic and is applicable to a restricted class of initialized hybrid automata. A solution of the
optimization problem either gives a counterexample execution that violates the ADT property, or
it confirms that the automaton indeed satisfies the property. The optim zation and the invariant-
based methods can be nsed in combination to find the unknown ADT of z given hybrid autowaton.

We developed a new abstraction technique, eveut order abstraction (EOA), for parametric
safety verification of real-time systems in which “correct orderings of events” needed for systemn
correctuess are maintained by tiniiug constraints on the systems’ behavio- [32]. By using EOA, one
can separate the task of verilying a real-time system inta two parts: 1. Safety property verification
of the system given that only correct event orderings occur; and 2. Derivation of timing parameter
constraints for correct orderings of events in the systein. The user first identifies a candidate set of
bad event orders. Then, by using ordinary untimed model-cliecking, the user examines wletlier a
discretized system model in which all timing constraints are abstracted away satisfies a desirable
safety property under the assumption that the identified bad event oxders occur in no system
execntion. The user uses counterexamples obtained [rom the model checker to identify additional
bad event orders, and repeats the process until the model-cliecking succe=ds. In this step, tlie user
obtains a sullicient set of bad event orders that wnst be excluded by timing synthesis for systemn
correctness. Next, the algoritlnn presented in the paper automaticall derives a set of timing
parameter constraints under whicl the system does not exhibit the identified bad event orderiugs.
From this step cambined with the untimed model-checking step, the nssr obtains a suflicient set
of timing parameter constraints under which the system executes correctly with respect to a given
safety property. In our documented work we illustrated the use of EOA with a train-gate example
inspired by the general railroad crossing problem. We also summarized three other case studies, a
biphase mark protocol, the IEEE 1394 root eoutention protocol, and the Fischer mutual exclusion
algorithm.

4 Tempo Toolkit: Architecture and Language

The Phase II STTR (18] completed in 2007 produces a solid implementation of the TIOA language
in the form of a toolkit: TEMPO. VERONIODO focused on a redesign of the core iniplementation
of the front-end {analyzer and compiler) and a design of its interfaces .o the various back-ends.
TEMPO has the following characteristics

e It is a Java 1.5 implementation of a refined TIOA language.

e It offers a modular design to facilitate the integration of additional tsols as independent back-
ends. {e.g., the PVS translator, the simulator or the model-checker). It is based on modern
modular architecture where each back-end tool is a plug-in that can be loaded at runtime to
extend the compiler.

e 1t features a fine-grained interface to communicate with back-eud tools that would make it
possible to establish a one-to-one correspondence between each back-end tool and the TIOA
abstractions offered by TEMPO.
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o It offers a flexible integration with the back-ends that let each back-end independently re-
fine the semantic rules to either augiment the core language with back-end specific language
extensions.

4.1 The Architecture of Tempo
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Figure 1: TEMPO's architecture

TEMPO's arclitecture was designed and developed by our academiic partner Laurent Michel
(University of Connecticut). and it is based on a modular multi-stage compiler. Tle overall
organization is shown in Figure 1. The first two compiler stages are fixed and independent of the
selected back-end tool. The third stage depends upon the selected tool and is loaded automatically
from a JAVA shared library (JAR filc) bascd on the user selection at the command e or in the
user interface.

The initial stage is responsible for the lexical and syntactic analysis of a TEMPO specifieation. It
assembles its input [rom one or more text files containing the specifications as well as one or more
vocabularies. A vocabulary is a TEMPO specification containing built-in abstract data types for
commonly used data structures such as sets, multi-sets, maps or arrays'. Lexical and grannnatical
errors are reported imiediately. The parser is written with a state-ol-the-art freely available parser
generator: ANTLR v2.7.x2. The output of this phase is an abstract syntax tree that is passed down
to a second analysis stage.

The second stage focuses on the semantic analysis of the specification. This phase performs
multiple pusses (iraversals) of the AST to analyze it.

From a ligli-level standpoint, the seiantic analysis applies a collection of validation rule to
each node of the abstract syntax tree. Each rule take the form

P(n)= g1, 0c

Msers can define their own additional vocabularies which are indistinguishable from TEMPO’s own built-in vocal-
nlaries
2ANTLR v2 is available from bttp://vwv.antlr2.org/
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where P is a boolean predicate on the subtree rooted at 1 that deterinines whether the rule is
applicable and g; through g, are actions that transform, annotate, or possibly tag the tree as
semantically unsound. Each back-end can add a set of validation rules that capture additional
requirements on the AST to comply with its limitations. For instance, if a back-end cannot operate
on expressions containing quantifiers (¥ or 3), it can add a rule

dass{n) = ASTForall V class{n) = ASTEuxist
= reject(n, “The back-end xyz does not support quantifizrs in expressions”)

that the semantic analysis will apply inductively (alongside all the other rules) to all the nodes of
the abstract syntax tree.

4.2 Tempo language

The TIOA formalisin and associated theory is defined in the monograph produced and published
as a part of this project {13}. Ve refer the reader Lo the monograph for the detailed information
about the TIOA fornalisin, and modeling aud analysis inethodology.

The TIOA language was refined during the implementation of TEMPO to take into accomt
standard user expectations and to produce an implementation as unifornt as possible. The TEMPO
language itsell has a minimal syntax, which closely matches the simple sexnantics of the Timed 1/0
Automata inathematical framework. In fact, the mapping between 2 Tempo automaton description
and the timed I/O automaton that it denotes is pretty transpareut. For aistance, an automaton’s
discrete transitions and continuous evolutions are described directly in Tenpo by “transitions” and
“trajectories”, respectively. The minimality of the language does not li nit its expressive power:
Tewmpo can describe very general systems of timed [/O automata. Of course, each analysis tool
brings its own computational limitations, and Temipo accommodates tlem with the addition of
tool specific restrictions (captured through the predicate mechanism des-:ribed above) to define a
suitable sublanguage.

5 Deployment Problems

This section reviews the deployment phase that arise when constructing a distributed systems. \We
discuss our prior work in the area, then present the language extensions 1eeded to convey the key
characteristics of deploymeut instances, and illustrate an application of our [ramework in specifying
a meaniugful sample deployment problem.

Our earlier work on deployment of distributed systeis was doue in the context of an architec-
tural specification framework called the Z3 [2, 1]. Z% uses five levels of abstraction, catled Interface,
lmplementation, Integration, lustantiation, and Installation, to describe the hardware and soft-
ware structures of distributed systems. Deployment of software compo tents to liardware nodes
takes place at the lustallation level using information gatlered at higher levels. I3 does not in-
corporate specification of component semantics, and we explored the use of the I/O Automata
lauguage in {1} to complement the structural specifications in Z°. Specification of systems in I°
can be done using UML, but it is not supported by an integrated develo>ment environment. The
deployment optimization was performed using customized tecliniques bas2d on binary iuteger pro-
gramming and genetic algorithms {3]. Our current work on deploywieut op-imization in TEMPO is in
part motivated by Z°. By contrast, TEMPO provides an integrated development enviromuent that
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incorporates both structural system descriptions and system semantics, and allows for automatic
generation of deployment mappings using advanced constraint-progrannning techniques.

5.1 Augmenting Tempo with deployment annotations

The Tempo deployment annotations, il any, arc part of the definition of a composite automaton.
Tlie composite automaton is the only portion of a TIOA todel which has multiple comnponents,
and it js these component parts which potentially conld be deployed to different computing nodes.

The simple composite automaton in Figure 2 illustrates the required deployment annotations.
(Section 5.3 Las a more realistic example using an Eventually Serializable Data Service (ESDS) (8,
7}.) Our example composite automaton consists of two types of compounents, A and B. Automaton
A has two output transitions, a send transition that specifies both a message to be sent and the
identificr ol'its destination, and a gossip transition that specifics data to be broadeast. Automaton B
has the two matching input transitions. For simplicity, the state and transition details for automata
A and B have been omitted. The coniposite automaton C has two instances of automaton A, called
al and a2, and three instauces of automaton B, called b1, 42, and b3.

automaton A - automaton (' connections
signature components {n1,n2};
output send(m : String, id : Nat) : al : A; {n2,n3,nd};
output gossip(data : Array[Nat, Nat]} a2: A;
states bl B(1); communication
transitions b2 : B(2); al.gossip => b1, 52,3 freq 5;
output send({m, id) b3: B(3) a2.send -> b3 freq 10;
output gossip(data) a2.send -> bl freq 2;
deployment
automaton B{id : Nat) nodes
signature . nl;
input send(m : String, const id) n2;
input gossip{dala : Array[Nat, Nat}) n3;
states n4;
transitions

input send(m, id)
input gossip(data)

Figure 2: Simnple composite automaton with deployment anuotations

The deployment annotations begin with the keyword deployment and contain, at a mininum, a
list of the computing nodes, the physical comiections among those nodes, and a description of the
communication patterns of the composite automaton’s components. The list of computing nodes
begins with the keyword nodes and is followed by the list of all the computers in the network,
namely nl, n2, n3, and nd. In this example, node nl is directly connected to n2, and nodes n2,
n3, and nd are directly connected to eacli other by a common connector. This is denoted by the
deployinent section beginming with the keyword connections and containing, for each set of directly
conuected nodes, a list of the individual nodes, separated by commas and enclosed in braces.

The last deployment section in this example begins with the keyword communication and lists
the relative frequencies witlt which each of tlie transitions of the composite automaton occur. For
each transition, the component whicl generates the transition as an outpnt transition is listed
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first, followed by a period, the name of the transition, the symbol ->, and the naunes of all the
compounents whicl receive this trausition as input. The list of input co. iponents are followed by
the keyword freq and an expression for the relative frequency of the trausition. Each frequency
expression is iuterpreted as the number of times the transition occurs during sowe time period
of unspecified length, where it is asswmed that the smine time period is used in determining the
frequencies for all the transitions. Here, component al broadcasts its gossio imessage Lo components
b1, b2, and b3 with a relative frequency of 5 while a2 outputs its send essage 1o component b3
with a relative frequency of 10.

Figure 3 enhances our example composite automaton with sone of the optional deployment
constraints. The first constraint, beginning with the keyword support, s)-2cifics which components
may run on which nodes. In our example, node nl supports componznuts al aud a2, node n2
supports all the compouents, and nodes n3 and nd support compouenzs bl, §2, and b3. If no
support section is provided in the depioyment aunotations, every compcient may be deployed to
every node.

automaton C connections separated
components {nl,n2}; {al,a2};
al: 4; {n2,n3 n4}; {b1, 52,3}
a2 : A;
bl: B; support together
b2: B, nl <- al,a2; {al,b1};
03: B; n2 <- all;
n3 <- b1, 2,03, communicaticn
deployment n4 <= b1,02,03; al.gossip - > b1, 02, b3 freq 5;
nodes a2.send ~> 43 freq 10;
nl; fixed a2.send ~> bl freq 2;
n2; n2 <- bl;
n3;
n4;

Figure 3: Aunotations for deployment constraius

The fixed section lists each component which must be deployed to a particular 1ode. Ouce
again, a statement of the form x <- y means that component y must be ssigned 1o host z.

Reliability and fault-lolerance consideration may require that sonte sroups of components be
separated or co-located. For instance, data replicas should be hosted on different nodes while tightly
coupled modules (a conununication ¢hannel and its replica) should be co-located for efliciency
reasous. The separated and together sections can be used to specify thess requirements and define
lists of sets of modules. In our example, components al and a2 must be assigued to distinct nodes,
components bl, b2, and b3 must be assigned to distinct nodes, and compunents al and bl must be
assigned 1o the same node.

Figure 4 illustratcs more advanced deployment annotations. The first of these is the constants
section, which allows thie user to name literals® uscd within the speeification. Components often
will “pass through” somne messages, possibly recording information from the nicssages in their state.
It is convenient to specify these common message frequencies using consiants. In our example, f1
is declared to have the value 5, and f2 is declared to have the value 2. Then f1 and f2 are used

3Currently only of 1ype Nat.
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to specify the relative frequencics of the three transitions in the communication section.

automaton C node types equivalent
components pec, sun; {n3,nd};
at: A;
a2: A; nodes support
bl:B; nl: peg nl <- al,a?;
b2: B; n2; n2 <- alf;
b3 : B; nd: sun; sun <= b1, 42, b3;
nd : sun;
deployment communication
constants connections al.gossip => b1,52,03 freq f1;
J1: Nat:=5; {n1,n2} bandwidth 25; a2.send -> 43 freq f1 + f2 msgSize 4;
J2: Nat:=2; {n2, sun}; a2.send -> bl freq f2 msgSize 8;

Figure 4: More advanced deployment annotations
M

Node types represent groups of nodes with the sante capabilities. Anywhere a group appear in a
specification, the node type may be used instead. 1he node types of a deployment mst be declared
with thie keywords node types followed by comma-separated list of node names and terminated with
a semicolon. Our example declares two node types, pc and sun. Node nl is of node type pc, and
nodes n3 and n4 are members of sun while node n2 has no node type. Whenever pc appears in the
specification, it is replaced with node nl, and whenever sun is used, it is replaced with nodes n3
and nd. For iustance, the connection among nodes n2, n3, and 14 may be specified as {12, sun}.

Some groups of nodes are complelely equivalent, in that they support the same set of compo-
nents and are connected to other nodes in an equivalent manner. Specifying that these nodes are
equivalent enables the opimizer to be more efficient. The scts of equivalent nodes are listed in the
equivalent section. In our example, nodes n3 and nd are equivalent.

In some applications the aiount of data transmitted with each trausition is essentially the same,
but in other applications the amount of data transmitted varies from one transition to another. The
deployment annotations allow the size of the transmitted data to be specified for each transition.
The optional stanza msgSize ezpr may be added to each transition listed in the communication
section. Each message size expression is interpreted as a multiplicative factor of an unspecified nnit
of transmitted data. In our example, the gossip messages from component al to components bl,
b2, and b3 are of size 1, the send messages from component a2 to component b3 are of size 4, and
the send messages from component a2 to component bl are of size 8.

A connection may have a bandwidth limitation. This is specified by appending the stanza
bandwidth ezpr where the expression specifies the maximum bandwidth for the set of nodes in the
corresponding connection. The bandwidth expression is interpreted as the maximum amount of
data which may pass through tlie connection during a time period, expressed as a factor of a unit
of transmitted data. The implementation assumes that each transition uses a single path for data
transmission. In our example, the connection between nodes nl and n2 has a maximum bandwidth
of 25.

5.2 Language Extensions for Deployment Annotations

Deployment annotations are added to the Tempo language as an optional extension to the defini-
tion of a composite automaton. The deployment specification begins with the keyword deployment
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=29

posed Aul ton ::=comp is hiddenActionSets? compSchedule? deployment?

deployment ::="deployment’ constanis? nodeTypes? nodes

conneclions equivalent? constraint* ¢ teclion

constant ‘constants’ (constant ; }+
constant ::=ID : typeRef := expr

nodeTypes
nodeType :

w:="'node’ 'types’ nodeType (, nodeType }* ;
D

nodes ::="nodes’ (node ; }+

node :=1D (( varList (, varList}* } }? (: nodeType }? deployWhere?
canmections ‘connections’ ({ nodeSpccList } (*bandwidth’ erpr)? ; )+
equivalent ‘equivalent’ ({ nodeSpecList } | }+

constrainl ::=support
| together
| separated
| fized
support ::="support’ (nodeSpec < - (*all’ | compSpecList); )+
together ::="together’ ({ compSpecList} : )+
separated’ ({ compSpecList } ; }+
fixed’ (nodelnstance < - complnstance 5 y+

communicalion ::="communication’ commSpec +
commSpec :='for’ ID *in’ INT . . INT *do’ commnSpec + 'od’
| commTransition
comm Tvansilion ::=compTransilion = > compSpecList *freq’ ezpr ('mwsgSize’ expr)? ;
comp Transition :=complnstance . 1D (( expr (, ezpr)* ) )7

nodeSpeclist ::=nodeSpec (, nodeSpec }*
nodeSpec ::=nodelnstance deployWhere?

| nodeType
nodefnstanec »=1D ([ ezpr (, ezpr)* ) )?

compSpecList 1:=compSpec (, compSpee }*
compSpec ::=complnstance deployWhere?
compinstance =:=ID ([ expr (, ezpr)* ) }?

‘vhere’ paramlRange (A paramfRange }*
ID "\in’ INT . . INT

plainOp ::=as before | . .
expr u=as before | expr (. . expr )+

Figure 5: EBNF Gramunar fragment for deployment exoressions.
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followed by optional constants and node types specifications, required nodes and connections spec-
ifications, optional cquivalent nodes and constraint specificatious, and a required commumication
specification. The components to be deployed to a network are the component parts of the com-
posite automatou.

Tl constants specification, il present, begins with the keyword constants followed by one or
more declarations of constant variables. Each declaration begins with an identifier, corresponding to
the name of the variable, followed by a colon, the data type of the variable, the assignment operator
:=, the value of tlie variable, and a semicolon. The scope of a constant variable declaration is the
body of the deployment specification. As the name implies, the value of a constant variable cannot
be changed. Constants may be used in expressions to specify bandwidth limitations of connections
and {requencies and message sizes of communicating transitions, for example.

The node types specification, il present, consists of the keywords node types, one or more
identificrs, separated by commas, and a semicolon. Each identifier is the name of a node type,
which is just a shorthand nawe for a group of nodes. A node may belong to at most one node type.

The mandatory nodes specification identifies the host computer nodes onto which the Tempo
conponents are 1o be deployed. It begins with the keyword nodes followed by oue or more node
declarations, each ending with a semicolon. Each node declaration begins with an identifier, cor-
responding to the nanie of the node, and a list of its parameters, if any, separated by connuas and
enclosed in square brackets. Each parameter specification cousists of an identifier, corresponding
to the local name of the parameter, followed by a colon and its data type. I[ multiple, adjacent
parameters are of the same data type, their identifiers may be separated by commas and followed
by a single colon and their common data type. After the node name and paranteters, there is an
optional node type designalion, consisting of a colon and the identifier of the node’s type, and an
optional where clause.

A node’s where clanse specifies the ranges of values for the node’s parameters. 1t begins with
the keyword where, followed by onc or more parameter range speeifications, separated by the AND
operator /\, and ends with a semicolon. Each identifier used within thie node’s parameter specifi-
cations must have a corresponding parameter range specification in the where clause consisting of
the identifier, the keyword \in, and the integer lower and upper bounds for the identifier’s values,
separated by two periods (. .).

The mandatory connection section itemizes the hardware conununication links in the network,
be they siniple communication cables connecting two nodes or Ethernet cables or switches connect-
ing multiple nodes. The section begins with the keyword connections and countains, for each link,
the list of directly conunected nodes, separated by commas, enclosed in braces, and terminated with
a semicolon. If a link las linited bandwidth, that is specified, after the closing brace but before
the terminating semicolon, with the keyword bandwidth followed by a measure of the limited ca-
pacity. If no bandwidth is speeified for a link, it is assnmed that the bandwidth of the connection
is suflicient to be considered unlimited for the purposes of deployment.

For cach coimection, cach node specification consists of an identifier, corresponding to the name
of thie node, and a list of its parameters, if any, separated by commas and enclosed in square brackets.
An optional where clause may be used to refer to a gronp of nodes, where cach identifier used within
the node’s parameter specifications must have a corresponding parameter range specification in the
where clause, as above. A node type identifier also may be used to refer to a group of nodes for a
commection, if all the nodes of that type are connected with a single communication link.

Equivalent nodes, if any, are listed next, beginning with the keyword equivalent followed by
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cach group of equivalent nodes. Within each gronp the individual nod=s or groups of nodes are
specified in the salie manuer as for connections, with the node specifications separated by commas
enclosed in braces, and terminated with a semicolon. Providing Lhe sets of equivalent nodes enables
the optimal deployment tu be caleulated more officiently.

Several constraints may be placed on the deployment of component= to nodes. For example,
soie components may execute only on a subsel of the network’s nodes Some compouents must
be deployed to the same node, wlhile other components must not be ca-located. Finally, some
cumponents must be deployed to particular nodes.

Each component specification consists of an identifier, corresponding 1 3 the name of the compo-
nent, and a list of its parameters, if any, separated by commas and enclosed in square brackets. An
optional where clanse may be nsed to refer to a group of components, where each unbonnd identifier
nsed within the component’s parameter specifications must have a correz yonding parameter range
specification in the where clanse, as for nodes.

The support coustraints, if present, specily whicli components may bc deployed to which nodes.
The section begins with the keyword support and gives for each nod= or group of nodes the
list ol components they support. Each individnal snpport coustraint tegins with an identifier,
corresponding to the namne of a node or node type. If the identifier corresponds to the name of a
node, it is followed by the list of the node's parameters, il any, separatec by commas and enclosed
in square brackets, and an optional where clause specilying the range of values [or the node's
parameters. The node specification is lollowed by the symbol <~ and either a list of specifications
for the supported components, separated by cominas, or the keyword ali if the nodes support all
components. Each support constraint ends in a semicolon. If no suppor1 constraints are included
in a deployment specification, every component may rmn on every nc ie; otherwise, a support
constraint must be supplied for each node.

The together constraints, if present, specily groups ol components that must be deployed to-
gether to the same nodes. Tle section begins with the keyword togetk=r and consists of groups
of component specifications, separated by commas, enclosed in braces, =1d terminated with semi-
colons.

Similarly, the separated constraints, il present, specify groups of ¢ amponents that must be
deployed to separate, distinct nodes. The section begins with the keywor 1 separated and consists
ol groups of component specifications, separated by cominas, enclosed 1 braces, and terminated
with semicolons.

The fixed constraints, if present, identify the components that mmst se deployed to particular
nodes. The section begins with the keyword fixed. Each individual fixd coustraint begins with
an identifier, corresponding to the name of the node onto which the component is to be deployed,
and a list of its parameters, if any, separated by commas and enclosed i: square brackets. This is
followed by thie synibol <= and a second identifier, corresponding to the name of the component,
and a list of its parameters, il any, separated by commas and enclosed in square brackets. Each
constraint ends with a semicolon. Since a fixed constraint assigns a single component to a single
node, neither a where clause nor a node type may be used in the specifi ‘ations.

The final deployment section, a mandatory communication section, s ecilies the frequencies of
the composite automaton’s communicating transitions. It consists of the keyword communication
followed by the individual transition specifications. Each transition spzcification begins with an
identifier, corresponding to the name of the “sending” component, a lis of its parameters, if any,
separated by commas and enclosed in square brackets, followed by the d=t symbol ., and a second
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identifier, corresponding to the name of one of the component’s transitions. These are followed by
the symbol -> and a list of component specifications, separated by commas, for the “receiving”
components. The transition specification ends with the keyword freq followed by an expression for
the frequency of the transition, optionally the keyword msgSize and an expression for thie average
size of the transition’s “message”, and a semicolon. The transition must be an ontput transition
of the “sending” component and an input transition of each of the “receiving” components. The
units and time interval for the transition frequency and message size expressious are not specified
as part of the deployment annotatious: it is assmmned that application-specific mits are selected
and uniforily used for all transition specifications and connection bandwidth limitations.

A for loop can be used to specify groups of similar transitions, such as those of gossiping data
replicas. The for loop begins with the keyword feor, an identifier for the loop variable, the keyword
in, integers for the lower and upper bounds on the loop variable, separated by the symbol ..,
and the keyword do. These are followed by one or more transition specifications, as above, and
the keyword od. Each occurrence of the loop variable among the parameters of the “sending” and
“receiving” component specifications is replaced, in turn, by each valne between the loop variable’s
bounds (inclusively).

5.3 Eventually Serializable Data Service Annotations

An Eventually-Serializable Data Service (ESDS) [8, 7] maintains multiple copies of its data for fanlt
tolerance, but it selectively relaxes the consistency requirements amaong its copies of the data in
exchange for improved perforinance. ESDS guarantees that the replicated data will eventually be
consistent, although it may not be at a particular point during the execution.

ESDS consists of four types of components: clients, front ends, replicas, and channels. The
clients request operations to be performed on the shared data and receive responses containing the
results of these operations. The front ends connmnnicate with the clients, keeping track of all their
peuding requests and forwarding those requests to one or more of the replicas. Each replica keeps
a copy of the requested operatious on the shared data and a partial order on those operations;
the partial order must be consistent with both the responses and the eventual total ordering of
the operations. The front ends do 1ot send every request to every replica, so the replicas “gossip”
among themselves to stay informed abont all the operations that have been received and processed.
The channels are used to transit these gossip nessages.

Figures 6 and 7 illustrate the coniponent communication of an example ESDS aud the computer
network onto which it is to be deployed. This example first appeared in [1). More recently,
the example was hand-coded in Comet to test the feasibility of using constraint progranuning to
determine optimal deployments [21]. Figure 8 contains the Tempo deployinent annotations for this
example.

The example consists of four clients, c[1], ¢[2], ¢[3], and ¢[4], two front ends, fe[l] and fe[2], and
six replicas, r[1], r[2], r[3], r[4], r[5], and r[6]. Clients ¢[1] and ¢[2] make their requests of fe[1], and
clients ¢[3] and c[4] make their requests of f¢[2]. Front end fe[1], in turn, forwards its requests to
r[1], and front end fe[2] forwards its requests to r[4]. The compounents are to be deployed to four
PCs, pe[l], pef2], pef3], and pcd], and ten Sun servers, sun[1] through sun[10]. Each of the PCs is
connected to a Sun, and all of the Suns are connected to each other with a conimon connector.

Several additional requirements are placed on the deployment. First, c[1], ¢{2], and ¢[3] must
be deployed to PCs; the rest of the componenuts must be deployed to Suns. Second, to maintain
fanlt tolerance, the replicas must be deployed to distinct computers. Third, fe[l] must be deployed
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Figure 7: Nodes for ESDS example.
Figure 6: Components for ESDS example.

to sunf?], and fe[2] must be deployed to sun[3]. This last requiremen. was added to make the
deployment optimization more tractable in its initial implementation [1].

The Tempo implementation of ESDS requires channels between each pair of replicas, making
the model more consistent with the original ESDS model [8]. These chznnels are named ch[I, 1]
thirough ch[6, 6], where replica r[t] uses channel ch[i,j] to gossip with rzplica r[j]. The chamels
require an additional set of deployment constraints, namely, each replica #[i] mmst be co-located
with each of its channels ¢hli, j].

Tlhe ESDS automaton in Fignre 8 stores both its components and its nodes in arrays. For
example, the Client components are declared in the components section witl

cli: Nat] : Client(i) where i \in 1..4;

Note that the data type of the array index must be declared as an Nat. The range of the array
indices is specified with the keyword where followed by the index varia _le, the keyword \in, the
lower bound of the indices, two periods, and the upper bound of tlie incices. Array indices need
not start with 1. Both the component and node arrays may be multi-dime 1sional, such as the array
ch of Chamnel components.

The components and nodes that are stored in arrays may be accessed both individually, such as
pel3], or as a gronp of sequential elements, such as sun[i] where i \in 5..1C in the equivalent section.
Again, a where clause is nsed to specify the range of array indices. Note 1hat the range of indices
may be used to specify a subset of the elements in an array.

In the communications section nested for loops may be used to spec 7y similar transitions for
arrays of components. This is particularly Lelpful in the ESDS antomato for specifying the gossip
[requencies of the 72 transitions among the replicas and channels.

6 Generating deployment models

The deployment annotations are incorporated into the Tempo Toolkit [17} as a new plug-in. The
plug-in translates the ainotations into a Comet constraint program, whicl is subsequently executed
to determine an optimal allocation of components to computing nodes in the target network. We
uow describe in detail the translation scheme, the resulting Comnet proigram, and the language
restrictions designed to enable effective automatic generation of optimal -eployment.
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automaton ESDS
components
cli: Nat] : Client(i) where i \in 1..4;
Seli: Nat] : FrontEnd(i) where i \in 1..2;
rli: Nat] : Heplica(i) where i \in 1..0;
cli: Nat,j: Nat] : Channel(i, j) where
i\in 1.6 /\ j \in 1.6
deployment
constants
clFreqg:
c2freq:
3 reg:
cdlreg:
gossiplreg: Nat:=3;
nodes
peli© Nat] where ¢ \in 1..4;
sunli: Nat] where i \in 1..10;
connections
{pelt], sun[1]};
{pel2], sun(2]};
{pef3], sun{3]};
{peld], sun(a):
{sunli] where i \in 1..10};
equivalent
{sun(i] where ¢ \in 1..4};
{sun[i] where i \in 5..10};
support
peli] where i \in 1.4 <~ ¢[1],¢[2], ¢[3];
sunl[i] where i \in 1..10 <~ c[4], fe[1], fe[2],
r(i] where i \in 1..6;
sunli) where i \in 1..10 <- ¢[f, j] where
i \in 1.6 /\ j \in 1.G;

fixed
sun(2] <~ fe[1];
sun[3] <~ fe[2];
separated
{r[i] where i \in 1..6};
together
{r[1], ch[1, j] where j \in 1..6}:
{r[2], ch[2, §] where j \in 1.6};
{r[3], ch[3, j] where j \in 1..6};
{r[4]. ch(4, j] where j \in 1..6};
{r[5]. ch[5, j] where j \in 1..6};
{r[6], ch[6, j] where j \in 1..6};

communication
c[1].request -> fe[l] freq elFreq,
c[2].request -> fe[l] freq c2Freq,
c[3].request -> fe[2] freq c3Freq;
c[4].request ~> fc[2] freq cdFreq;
Je[l].send => r(1] freq c1Freq + c2Freg;
Je[l].response => ¢[1] freq c1ireg;
fe[l].response -> c[2] freq c2Freg;
fe[?).send -> r[d] freq c3Freg + cdlreg;
Je[2].response ~> c[3] freq c3L7reg;
Je[2].response -> ¢[4] freq c4Freq;
r(1).receive -> fe[1] freq clireq + c2Freq;
r[d].receive -> fe[2] freq e3Fveq + c4Freq;
for ¢ in 1..6 do
for jin 1.6 do
r(i].gossipSend ~> chli, j] freq gossipl'req;
chli, j].gossipReceive ~> r{j] freq gossiplreq;
od
od

Figure 8 Deployment annotations for ESDS example




VEROMoODO, Inc. Final Technical Report FA9550-07-2-0114 28~

6.1 Translation Scheme

The deployment annotations are extensions to the Tempo language, Deployment :

s0 care was taken (o minimize their impact on existing Tempo pro- pef2) < cf1)
grams. To that end, the deployment annotations only occur within pel2] < cl2]
the definition of composite automata, and they are isolated within peld) <- cf3)

those definitions to a separate new section begimniug with the key- sunl3] <- c[4)
word deployment. sun[2] <- fe[s)

The translation process begins by enumerating all the components  gun(3) <- fe[6]
and nodes and assigning their names, as provided by the Tempo mod- sunf2] <- r7)
eler, to two arrays of type string. The Comet program then identifies sun(5) <- r(8l
the components and nodes by the indices ol their names in these ar- sun[1] <- r(9)

rays. For example, for the deployment annotations in Figure 2 the  gyn13) <- r[10]
array of node names is ['nl”,"n2","n3","nd”] and the connection sunf4) <~ r(11)
sets {nl,n2} and {n2,n3,nd} are encoded as {0,1} and {1,2,3}. At gun16) <- r[12)
the end of execution, the Comel program displays the optimal deploy- .
ment with the Tempo modeler’s nanes. Figure 9 shows the resulting
deployment output for all but the channel components of the ESDS  Figure 9: Deployment for
example in Section §.3. E3DS Examiple

The variables declared in a constants section of the deployment specification are carried over to
the Comet program and declared and initialized there. When these variab es are subsequently nsed
to specily commnunication frequencies, for example, the variable names, rathier than their values, are
encoded in the Comet program. This allows arbitrary arithinetic expressions {or communication
frequencies without reguiring the Tempo (ront-end to evaluate those expressions.

6.2 Comet Program

The output of the translation stage is a COMET program. That program relies on Constraint
Progranuning technology to solve the deployment problem optimally. Constraint progranuning
delivers a complete solution method. Constraint programs revolve around (wo components. A
declarative component state the discrete decision variables, the constra.nts that every solntions
nmst satisfy and the objective function. The second component foenses on the specification of a
tree-search process revolving around an implicit enumeration.

The TEMPO translator for COMET produces a complete model that [eatnres both the declarative
component and an instantiation of a search template. That template takes advantage of the prop-
erties conveyed throngh the annotations sich as the equivalence classes (specified in the equivalent
seclion) among nodes to hmplement a syninetry breaking procednre thatconsiderably reduces the
running time.

As with equivalent and support, the generated COMET code varies depending upon whetlier or
not bandwidth constraints are ineluded in the deployment specification. Five different interpreta-
tions of the bandwidth constrainls were considered.

o A single path is nsed belween each pair of nodes.
o A single path is used between each pair ol components.

o A single path is used for each transition.
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s A single path is used for each message.
o Multiple pathis may be used for a single essage.

We cliose to use a single path between each pair of compounents since that option most closely
embodies the concept of establishing a connection between commponents. Subsequent versions of
thie deployment plug-in may include other types of baudwidth constraints, or even include commmu-
nication load balancing among the connections.

Performance-wise, the prograims generated with the help of the TEMPO translator are more than
competitive with hand-written prograins. When applied to the ESDS deployment, the generated
progran is, to this date, the most effective way to solve the problem. The cffectivencss of this
approach, when compared with modern mixed-integer programming solvers, is reported in [22]. For
thie ESDS example in Section 5.3, the COMET prograin finds the optimal deployment approximately
20 times faster than CPLEX version 11 and 25,000 times faster than the hand-coded C program
reported in [1].

6.3 Tempo Language Restrictions

Each of the Tempo Toolkit plug-ins place some restrictions on the Tempo language constructs
which are supported, and the deployment plug-in is no exception. First, since the components
and nodes must be enunterable, the contents of tlteir where clauses currently are limited to range
sets of type Nat and the /\ operator, as in cft, j| where ¢ \in 1.6 /\ j \in 1..6. Second, nested
composite automnata are not supported, pending identification of distributed systems that require
this modeling complexity.

Tempo specifies the communication among components implicitly; each output transition is
linked with all input transitions having the same name and matching parameters in other com-
pouents. One of an output transition’s parameters often specifies an identifier for the component
with the matchiug input transition. This is particularly useful for applications using arrays of
components.

Unfortunately, this implicit linking through parameter values makes it extremely difficult for
the Tempo deployment annotations to match output transitions with input transitions at compile-
time as needed, rather than run-time. The current annotations use explicit, rather than implicit,
transition matching as a result. For example from Figure 2, a2send ~> 13 freq 10; gives the
frequency of the send output transition of a2 when it is linked with the send input transition of
b3, and al.gossip -> bl,b2, b3 freq 5; gives the frequency of the gossip output transition of al when
it is linked with the gossip input trausitions of bl, b2, and 3. The downside of this approach is
that the Tempo front end can only do limited error checking. In the first example, the front end
ensures that a2 and b3 have send transitions of the proper type, but it does not ensure that the
transitions actually will link in a run-time setting nor does it ensure that there aren’t additional
send input transitions in other components which also will link with the output transition. An
alternate communication syntax being considered is a2.send{__, 3} freq 10;, which implicitly links
the parameter 3 to a parameter of type const in the send input transition of component b3.

7 Solving deployment models

This section describes the optimization model that one obtains from the TEMPO translator when
it is applied to the Eventually Serializable Data Service application. The section starts with a pre-
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sentation of the abstract model followed by its incarnation in COME'T as = constraint progrannming
model.

7.1 The Abstract Model
The input data consists of

The set ol software modules C.

The set of hosts N.

For each component, the subset of hosts Lo which it can be assignei. In the following, 5., is
a boolean variable equal to true if and only il component ¢ can be assigned (o host n.

The network cost is directly derived [rom its topology and express:d with a matrix i where
h; j is the minimum number of hops required to send a message frzm host { to host j. Note
that h;; = 0 (local messages are [ree).

The message volunes. In the following, f,, denotes the average [:2quency of messages sent
from component a to component b.

The separation set Sep which specilies that the components in cach S € Sep must be hosted
on a different servers;

The co-location set Col which specifies that the components in eac S € Col must be hosted
on the same servers;

The decision variables z; are associated with each module ¢ € C and #. = n il component c is
deployed on host 7. An optimal deployment minimizes

Z Z Jup - hry o,

a€C beC

subject to the following constraints. Each component mmay only be assiguzd to a host that supports
it

VeeC : zce{ie Nfs.i=1}.
For each separation constraint S € Sep, we impose
Vi,je€S i#]j=>ua#u;.
Finally, for each co-location constraint expressed over a subset of campo..ents S € Col, we impose
Vi,j €8x =5
7.2 The CP Model

The COMET constraint program generated by TEMPO for the Eventually Serializable Data Service
Deployment Problem is shown in Figure 10. We review ifs main conpor =uts.
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1 range Caps = 1.nhCap;

2 range Coloss = 1..nColors;
s range Orders = 1L.ubOrders;
1 range Slabs ..nhSlabs;

5 int capacities[Caps| =
6 int weight[Orders
7 int color[Orders)

» .
a set{int} colorOrdersic in Colors] = filter(o in Orders) (colorfo] == ¢);

W

v int maxCap = max(i in Caps) capacities(i);

1z int loss[c in 0. naxCap) = min(i in Caps: capaciliesfi] >= c) capacities[i] - ¢
\E]

14 Solver<CP> m();

1z var<CP> {int} x{Orders|(mn,Slabs);

16 var<CP>{int} {(Stabs|(mn 0..maxCap);

"7

13 minimize<in> sum(s in Slabs) loss{lfs]}

19 subject to {

20 m.post(mulliknapsack(x,weight,l));

2t forall(s in Slabs)

k) npost(sum(c in Colors) (or(o in colorOrdersfc]) (x[o] == s)) <= 2);
23 } using {

20 forall{o in Orders) by (x[o].getSize(),—weight[o}) {

25 int ms = max(0,maxBound(x));

26 tryali<m>(s In Slabs: s <=ms + 1)
25 m.label(x[o],s);

28 onFailure

29 m.diff(x[n],5);

30

3t}

Figure 10: The Constraint-Programming Model in COMET

7.2.1 * The Model

The model is depicted in lines 1-21 in Figure 10. The data declarations are specified in lines 2-10
and should be sell-explanatory. The decision variables are declared in line 10 (they are the sane
as in the ESDS model given earlier): variable zc| specifies the host of component ¢ and its domain
is computed from the support matrix s.

The objective function is specified in lines 12-13 and eliminates the diagonal elements (since
h;; = 0 for every i € N'). The CP formulation features a two-dimensional element coustraiut since
the matrix A is indexed by variables. Lines 15-18 state the co-location constraints: for each set §
(line 15), an element ¢; € § is selected (raudomly) and the model imposes the constraint x., = .,
for each otlier elements cz in S. Lines 19-20 state tlie separation constraints for every set in Sep
nsing alldifferent coustraints. The onDomains annotations iudicate that arc-consistency must be
cuforeed on the equations and alldifferent constraints.

It is interesting to discuss the pruning perfornied by the objective function wlen an upper bound
is available. [n COMET, the multi-dimensional element constraints are implemnented in ters of a

= B
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table T which contains all the tuples
(a.b,hap) (e.b€EC).

COMET also creates a new variable o, for each term h,, ,, in the cbjective and imposes the
constraint
(%a,20,04) €T

on which it achieves arc consistency. With this in place, the objective tl en becomes

SN Sabe vup

aeCbeC

7.2.2 The Search Procedure

The search procedure is depicted in lines 23 29. It is a variable labeling with dynamic variable and
value orderings. Lines 24-28 are iterated until all variables are bound (line 23) and each iteration
nondeterministically assigns a variable x{i] to a host n (lines 25-26).

1t is interesting to review the variable and value orderings which are 11otivated by the structure

of the objective function

Z Z Jig -l

ieC jeC
In the objective, the largest coutributions are induced by assignments o] compouents i and j that
are communicating heavily and are placed on distant hosts. As a result, the variable and value
ordering are based on two ideas:

1. Assign first a component i whose communication frequency f[¢,7] with a component j is
maximal (line 24);

2. Try the hosts for component i in increasing number of hops requ red Lo comnmunicate with
component j (line 25).

The variable sclection thus sclects first components with the heavicst (single) communications,
while the value selection tries to deploy the components to minimize the number of hops.

Arc-Consistency for fitering The CP model used here is quite elegant since it enforces arc
cousistency on all constraints and the objective function. One may wonder whetlier arc consistency
is critical in ESDSDDs or whether a weaker form of consistency is snficient. Table 1 depicts a
comparison of a bound-consistency model and an arc-consistency model on a collection of synthetic
benclhmarks. The second and the third column report the results of the CP solver when bound
consistency is enforced on the objective, while the fourth and the fifth colnmns report the perfor-
mance for the arc-consistency model. The experimental results show a dramatic loss in performance
wlien arc consistency is not used and underline the importance of usinz sophisticated constraint
programming techniques to deliver the desired performances.
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Algo CP-BC CP-AC
Bench Tena | #CHPT Tena } #CHPT
SIMPLE?2 1.20 7582 0.23 2510
SIMPLE1 6.11 46874 1.38 15408
SIMPLEO 37.21 307365 7.75 87491
fedchpe 94.81 748118 2.76 14597
fe3c5pch 639.87 4705378 4.64 24130
fedchsun 166.39 1336353 6.29 30621
fe3c6pch 1039.20 7238665 3.54 18547
fe3c¢7pch 2107.10 | 14446831 7.83 35726
fe3c7pc5CS 1916.56 12940789 7.77 35312
fe3c7pc5CST 1286.37 8557202 | 13.68 70495
fe3dist 93.64 839781 4.16 29750
SCSS1SNUFE 62.80 482601 | 43.34 | 392628
SCSS2SNUIE G0.47 442373 | 66.43 380117
SCSS2SNCFE 30.41 246228 | 50.83 322472
HYPERS 7653.06 | 33628203 | 65.07 123213
HYPERIG 34570.90 | 156832040 | 237.53 513051

Table 1: The Value of Arc Consistency for the CP Model

Exploiting Value Symmetries As discussed earlier, some instances of the ESDS deployment
problem feature a variety of symmetries, which can be removed to improve the search performance
without sacrificing optimality guarantees. Tecliniques for removing these symmetries during search
are well-known (see, for instance, [33]).

Figure 11 illustrates hiow Lo enhance the scarch procedures presented earlier with symuetry
breaking. The sets of equivalent hosts are supplied as additional input data and are used to deter-
mine the set of non-equivalent hosts (lines 1-2). Each iteration of the search procedure calcnlates
the set of nodes that are bound in line 6 and the set of nodes that are cligible to host the next
component with lincs 7 through 11. Line 7 starts by initializing the searchNodes, to all the non-
equivalent nodes plus all the nodes on which components are already deployed. Tlhe loop in lines
8-11 simply adds to searchNodes one still nmused node from eacli equivalence class.

8 A Formal Treatment of an Abstract Channel Implementation
Using Java Sockets and TCP

Our earlier research substantiates our ability to implement practical techniques for generating dis-
tribnted code antamatically, starting from formal Inpnt/Ontput Automata (IOA) specifications in
Tempo. Namely, we have developed an antomated code-generator for IOA programs in a specific
node-channel form that produccs Java code rnnning over MPI on a local area network [30, 31], and
have used this to generate running versious of a variety of basic distributed algorithms [10]. We have
also developed two complete distributed systems by manually (but systematically) translating for-
mal I0A specifications Lo distribnted code, using C++/MPI to implement an eventually-serializable
data service (7], and using Java/sockets to implement a reconfigurable atomic read/write memory
service, called Raubo, e.g., see {26, 11}. The methodology that emerged as a part of tlie develop-
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1 set{set{int}} Fq
2 set{int} NolEq =
1

.t //The equivalent host sels
/The non--equivalent hosts

5

+ while (sum(k in C) x{k].bound{) < C.ge1Size()) {

5 selectMax(a in C: !x[a].bound(), b in C)(f[a,b]} {

" set{int} boundNodes = cellect(s in C : x[s].bound()) x[s];

7 set{int} searchNodes = notEq unien(union(e in Eq) ¢ inter boundNodes):
8 foral! (¢ in Eq) {

) set{int} fon = ¢\ boundNedes:

10 if (card (fen) > 0) scarchNodes.insert(min (n in fen) n);

" }

12 int k = min(k In N : x[c2}.memberQO{(k)) k:

13 tryall<m>(n in searchNodes : x{el}anemberOf(n)) by (hfn, k|)
14 ep.post(x]a] == n);

[ onFailure

I3 ep.post(x[a] 1= n);

17

»mo}

Figure 11: The Search Procedure with Value Symmetry Breaking

ment of the latter system (Rambo) will be the basis for prototype implemeutation and eventual
production-grade compiler for Tempo.

As a part of this cffort, we have addressed the problemn of mapping Tempo-specilicd channels
used in dynamic distributed systems to executable code en roule to protolyping automated code
generation.

Abstract models and specifications can be used in the design of distributed applications to
formally rcason about their safety properties. However, the beuefits of nsing formal wethods are
often negated by the ad hoc process of mapping the functionality of au abstract specification to
the low-level executable code for target distributed platforins. We have developed the first formal
specification of an abstract asynchronous communication channet with support for dynamic creation
and tear down of communication links between participating network nodss, and its implementation
using Java sockets. The specifications are expressed using the Temnpo formalism, and it is proved
that the resulting implementation preserves the safety properties of tl e abstract chammel. This
approach can be used to implement algorithms for dynamic systems, where communicating nodes
may join, leave, and experience arbitrary delays. This directly benefits antomated code generation
we are targetting in this project, and we plan to include an implementat on of such chaunels in the
Tempo toolkit as a standard building block for dynamic distributed systems. Our results appear in
the proceedings of 2008 JTEEE International Symposium on Network Comnpuling and Applications
[12].

8.1 Rationale: towards code generation

The increasing complexity of distributed software systems makes reasonii g about their behavior ev-
crmaore challenging. Abstract specifications of distributed systems simplify formal rcasoning about
their salely guarantees, and several forimal systems have beeu used for this purpose. However, this
abstraction makes challenging the mapping of the high-level specification to the facilities available
in a targel programming language.
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‘Iranslation of abstract specifications into executable code for target environments is particularly
challenging in the case of consmunication channels. Distributed services are designed for a specific
communication model, where the salety properties of the communication links used by service
directly impact the safety guarantees of the overall system. Cominon practice often foregoes the
rigorous safety arguments about the channel implementation and its interaction with the system
components. Hence, it is not clear whether the resulting implementation is correct with respect to
its higl-level specification.

The key contribution of this work is the first specilication of an abstract asynchronous conunn-
nication channel with explicit support of dynamic creation and tear down of conimunication links
between the network nodes, and its implententation using Java sockets and TCP. For simplicity,
our solution associates a unique socket with each communication link between a pair of nodes,
and thus it assumes that once a node closes a connection with some destination, it will not try
to subsequently reopen it. Our solntion can be naturally extended to incorporate multiple, con-
current, point-to-point socket counections. We prove that the implementation preserves the saflety
guarantees of its abstract specification.

In this work we use the Input/Output Automata model Lo specify and reason about the beliavior
of distributed algoritluns. A plethora of algorithins have been described using this model. We refer
to the language used to describe systems in this model as IOA. It is of practical interest to be able
to correctly specily and translate JOA models into executable code.

Tauber [30] wrote the IOA compiler, which nses a target programmiing [ramework consisting of
Java and MP1 The compiler design is proved correct Lo ensure that the safety guarantees ol the
source specification are preserved by the resulting Java/MPI implenentation. However, the choice
of MPI limits thie domain of systems to those that do not encounter failures and arbitrary message
delivery delays, and that do not have nodes joining and leaving during execution. Given that our
approach allows failures, delays, and dynamic node participation, another direct application of
the work presented lere is an alternative methiod of implementing robust communication chiannels
using TCP and Java sockets. Note that both methods of communication, ie., Java/MPI and
Java sockets/TCP, may be emplayed by a compiler, wlhere the first can be chosen for failnre-free,
performance-oriented applications, wlhereas tlie second is chosen for dynamic applications using
asynchronous channels.

8.2 Technical development: channel implementation

We present an asynchronous communication channel that connects applications running on any
number of networked machines. Eacli sender node may create counections with any number of
receiver nodes, and either the sender 11ode or the receiver node may gracefully close the connection.
Messages may be lost, delayed, and delivered out of order. The current model supports ouly a
single socket connection between any two nodes. Tlus, once a connection between two nodes is
establislied and subsequently closed, it cannot be reopened (unless it can be determined that the
socket can be reused). Allowing multiple, possibly concurrent, socket connections between two
nodes is a straightforward extension to this model.

\We first defined an automaton, called ABsCH, modeling the behavior ol a many-to-may, asyn-
chronous communication chanuel that allows nodes to spontaneously connect and disconnect. The
connections are closed i1 a graceful way, ensuring that messages that are in-transit are delivered
before the counection is closed. The signature, state, and transitions of AssCx are depicted in
Figure 12.
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Signatnre:

Input: Ourtpnt:
send(m, i, 3), where mr & M, 13 € | receive(m, i, j), where m € of and 1,3 € /
receiverListening(j), where j € / respReceiverlistening(y, j), wherc i,j € /
senderOpen(i, j), where i, j € / Internal:
receiverStoplistening(j), where j € [ senderClosing(i, j), where i,7 € 1
receiverClose(f, j), where 1,j € / lose(m), where m € A7

senderClose(i, j), where 1,3 € /

State:
messages, subset of M x I x I, initislly 0

listening, subser of I, initially @

status : | x | — {closed, connecting, connected}, initlally all closed
emplytng 1 I x I - Boolean, initiaily all faise

Transitions:
input send(rm,1,5) oulpnt receive{rmn, i, )
Effect: Precondition:
if status(i, 7) # closed A —emptying(i, ) then (m,i,7) € messages
inessages — messages U {(m, 3, j}} status(i, j) = connectad
Eflert:
iuput receiverListening(j) messages — messagev\ {(mn,i,5}}
Fffect
listening — hstening U {j} ontput respReceiverListering(i, j)
Precondition:
It senderOpen(i, j) s_lalus(i,;_) = connect g
FEffect: j € listening
status(i, j) — connecting Effect:

status(i, j) — connected

input receiverStoplistening(5)

Effect: internal senderClosing(i, 2
listening — listening \ {j} Precondition:
emptying(i, j)
tput receiverClose(t, j) V{m,s,r) € messages. s Einr# ]
Effect: Effect:
ges — \{(m,s,0) € s =iAr=j) et (i) hasicsed
status(i, j) — closed emplying(i, j) — false
5 . . internal fose(rn)
;;‘l?:‘ll e Precondition:
. . m, i, j) € messages
emptyng(i, j) — true l‘:ﬁe(d: 1) € messag

messages «— messages \ {{m,1,))

Figure 12: Signature, state, snd transitions of the absiract many-to-man+ sutomalon, AssCH.
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Node /
Send  lgp| e TCP
Mediator > | Sockets
Al ﬁpltjhcat‘lgn CiWM |
utomaton hannel
; el TCP
Receive I 41»1| Sockets
Mediator i

Figure 13: Node automaton.

Next, we developed an automaton, called Jvam-TcpCH, that models the behavior of the Java
interface to a communication channel using TCP., We do not model TCP itself or the Java Virtual
Machine (JVM) environment; instead, we concentrate on the high-level behavior and the specific
interface with sockets via the Java libraries.

Following Tauber's approach {30], we then establish a mediation between the sending appii-
cation, the conununication chaunel, and the destination application. The mediating automata
are mapped to the nodes of thie corresponding application automata, as illustrated in Figure 13,
showing a node automaton coinposed of an application automaton and mediator automata, where
the mediator automata interact with the TCP sockets through the JVM-TCP channel interface.
We refer to the composition of the Jva-TcpCh automaton witht the mediating automata as the
ConpCH automaton.

The nethod of forward simulatiou {16] is used to prove our main result that CoMpCH implements
ABsCH, hence preserving the properties of our abstract asynchronous chanuel. The full technical
development can be found in the available technical report. Tlhe main result is formally stated as
follows.

Theorem 1 The sel of traces of CoMPCH 1is a subsel of the set of traces of ABsCH.

9 Conclusion

This results documented in this report were developed under Phase I STTR contract for topic
AF07-T019. This project advanced the state of the art in forinal modeling and engineering of
complex distributed systems. The project included: (a) modeling language that cau be used to
represent complex distributed systems, theory and methodology providing mathematical basis for
modeling systems and reasoning about their properties, (b) extensible and scalable analysis tools
that can be used to validate correctness and performance properties, and synthesis tools for produc-
ing efficient deployment scheimes of the software components in target networks subject to specified
constraints. The project extended the methodology to incorporate additional means for reasoning
about probabilistic and hybrid systems. The project extended an integrated development envirou-
ment, called Tempo, for modeling, synthesis, and analysis ol distributed systems, developed tools
for efficient deployment of the software components in target networks, and explored a methodology
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for generating code.

Current work on [uture extensions for the Tempo toolset and the overill methodology is funded
by NSF, and includes work on distributed code generation from Tempo specifications and opti-
mization of distributed system deployment in target network platforins.

Current releases of Tempo toolset for Linux, Windows, and OSX/PIXC platforms are available
at www.veromodo.cont.
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